Nonlinear Forced Oscillations of a Shallow Spherical Shell

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Shallow Spherical

We consider the problem of local controllability from the origin for a coupled nonlinear shell via boundary controls.

متن کامل

Multiplicity of Forced Oscillations for the Spherical Pendulum

where h : S → R is C and tangent to S, η ≥ 0 and φ : R × TS → R is continuous, T -periodic in t, and such that φ(t, q, v) ∈ TqS for any (t, q, v) ∈ R× TS. In the case when φ does not depend on ẋ, the problem of the existence of T -periodic solutions of (1), for any value of λ, has been positively solved in [2] and [3], and extended to the case of even dimensional spheres in [5]. In this paper, ...

متن کامل

A Uniqueness Theorem for a Classical Nonlinear Shallow Shell Model

The main goal of this paper is to establish the uniqueness of solutions of finite energy for a classical dynamic nonlinear thin shallow shell model with clamped boundary conditions. The static representation of the model is an extension of a Koiler shallow shell model. Until now, this has been an open problem in the literature. The primary difficulty is due to a lack of regularity in the nonlin...

متن کامل

Nonlinear r-modes in a spherical shell: issues of principle

We use a simple physical model to study the nonlinear behaviour of the r-mode instability. We assume that r-modes (Rossby waves) are excited in a thin spherical shell of rotating incompressible fluid. For this case, exact Rossby wave solutions of arbitrary amplitude are known. We find that: (a) These nonlinear Rossby waves carry ZERO physical angular momentum and positive physical energy, which...

متن کامل

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of JSME

سال: 1984

ISSN: 0021-3764,1881-1426

DOI: 10.1299/jsme1958.27.2233